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SUMMARY

A semi-implicit Taylor–Galerkin/pressure–correction finite element scheme (STGFEM) is developed for
problems that manifest free surfaces associated with the incompressible creeping flow of Newtonian
fluids. Such problems include stick–slip and die-swell flows, both with and without a superimposed drag
flow, and for plane, axisymmetric and annular systems. The numerical solutions are compared with
available analytical and numerical solutions, both in the neighbourhood of singularities and elsewhere.
Close correspondence in accuracy is extracted from the literature for both stick–slip and die-swell flows.
Stick–slip flow is used as a precursor study to the more complex free surface calculations involved for
die-swell in extrudate flow. Two different free surface techniques are reported and results are analysed
with mesh refinement and varying structure. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The focus of this paper is the investigation of a finite element time stepping scheme based on
pressure–correction in its application to free surface flows for Newtonian fluids. Intrinsic to
this study is the implementation of free surface location techniques. The numerical method is
based upon a semi-implicit Taylor–Galerkin/pressure–correction finite element method
(STGFEM) [1,2], which has been successfully implemented in a variety of different flow
circumstances. Specific problems considered are stick–slip and die-swell flows under creeping
conditions. These flows are analysed in two-dimensional plane, axisymmetric and annular
co-ordinate systems. Annular flows are taken as pressure-driven with a superimposed drag
flow, chosen as characteristic case studies relevant to the industrial process of wire-coating.

For stick–slip flow, comparison is made against the analytical solution of Richardson [3] for
plane creeping flow. Many problems described via systems of partial differential equations,
display singular solutions near corners or crack tips. The region between stick and slip
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manifests just such a singularity. The flow behaviour in the neighbourhood of such singular
points is of particular interest, where high stress concentration or sharp velocity gradients
prevail. This influences the solution locally and demands a high concentration of low-order
elements for adequate representation. To reduce this effect, Okabe [4] presented the theory of
semi-radial singularity mapping, which provides for stress and strain near the singularity with
bounded strain energy. Following the solution of Richardson, various numerical methods were
introduced to improve accuracy. Ingham and Kelmanson [5] estimated the solution in the
neighbourhood of the singularity and accelerated the rate of convergence using a singular
boundary element method (SBEM). Kermode et al. [6] calculated the solution near a singular
point using a finite element method (FEM) [7] and a least-squares fitting procedure. They
retained the first three terms of the singular expansion series. Georgiou et al. [8] improved the
solution accuracy over continuous methods in the neighbourhood of the singular point using
a singular finite element method (SFEM). In a subsequent study, Georgiou et al. [9] further
developed the integrated singular basis function method (ISBFM) in application to stick–slip
and die-swell flows. These singular function methods provide a sound basis for comparison of
the quality of solutions generated by the present methodology, above and beyond that of
Richardson.

Extrudate flow from a die is a special case of a stick–slip flow, where the free surface shape
itself must be estimated. This is an important issue in rheology and has considerable
significance to polymer processing operations in industry. Richardson [3] also supplied an
analytical solution for this case with integral transforms, for large surface tension under
creeping flow conditions and without gravitational effects. Tanner [10] has provided data from
the literature on the use of several numerical schemes to compute die-swell flow, e.g. finite
element, finite difference and boundary element, and comments on the better performing
algorithms to estimate the position of the free surface streamline. Tanner catalogues results for
swelling ratio covering axisymmetric and planar dies for Newtonian and viscoelastic flows. An
asymptotic result is also quoted [10] as a simple approach for estimating practical extrudate
swell calculations, where the surface tension of the extrudate is not a dominant factor.

A number of authors have employed FEM techniques for creeping die-swell flow. Using a
classical FEM implementation with fine meshing, Nickell et al. [11] demonstrated solutions for
viscous incompressible jet and free surface flows of Newtonian fluids. Chang et al. [12] studied
die-swell for Newtonian and viscoelastic fluids by Galerkin and collocation methods. Crochet
and Keunings [13] dealt with slit, circular and annular dies for Newtonian and Maxwell fluids,
introducing a mixed FEM. Crochet and Keunings [14] went further to show that mesh
refinement, with increased concentration of elements at the singularity, has a major impact on
die-swell calculations. We cite Silliman and Scriven [15] for their work on free surface
treatment for Newtonian fluids, though their principal focus was concerned with slip (see our
companion study [16]) and surface tension effects on free surface shape. Phan-Thien [17] also
considered slip effects with a boundary element method (BEM), in planar flows for viscoelastic
fluids. This study is relevant for the proposed alternative free surface location technique
therein. Beverly and Tanner [18] used boundary and finite element methods to consider
extrusion of Newtonian fluids at finite Reynolds number for planar, axisymmetric and
three-dimensional dies. They found that in an unconstrained extrudate, the particles in the free
extrudate will follow spirals or helices. In passing, we point out that thermal effects have also
been found to influence free surface shape [19].
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Beyond the consideration of numerical solutions, some experimental results are presented in
Butler and Bush [20] and Ahmed et al. [21]. Butler and Bush provided experimental evidence
for dilute viscoelastic fluids (polyisobutylene–polybutene) in axisymmetric isothermal flows.
Ahmed et al. found correspondence between experimental observations and the numerical
solutions derived from an FEM in planar entry flows and die-swell flows for molten
polyethylenes.

Our interests lie in the generalization of the STGFEM to incorporate the treatment of free
surfaces and, in particular, in applications for non-Newtonian flows. In the case of planar
stick–slip flow, the STGFEM approach is shown to provide accurate numerical results as
compared with analytical solutions for velocity and pressure. Close correspondence is extracted
for our numerical solutions near the singularity with those of the literature. The influence of
die-swell is established in contrast to stick–slip flow. We are able to quantify the difference
that drag flow has on stick–slip flow via the change in pressure drop, peak shear rates and
adjustment in free-stream velocity. Likewise, we are able to draw on comparison between
die-swell and die-swell/drag flow, to indicate the reduction in swelling ratio and angle and peak
shear rates. In addition, this paper provides a useful pilot study for the analysis of annular
pressure-driven drag flows, typical of those that arise in tube- or pressure-tooling settings for
wire-coating.

2. GOVERNING EQUATIONS

For Newtonian fluids and incompressible isothermal flow in the absence of body forces, the
governing equations are those of generalized momentum and continuity, which may be
expressed as

rUt=9 ·(m9U)−rU·9U−9p (1a)

9 ·U=0 (1b)

where variables velocity (U) and pressure (p) are defined over space and time with temporal
derivative represented as Ut. Material parameters are given via density (r) and viscosity (m).

For constant m, the celebrated Navier–Stokes equations emerge. To non-dimensionlize, we
select the following characteristic scales: length L, velocity V, time L/V, pressure m0V/L. We
may define the following dimensionless variables and differential operators:

U*=
1
V

U, p*=
L

m0V
p, t*=

V
L

t

Z*=
1
L

Z, r*=
1
L

r, m*=
1
m0

m

9*=L9,
D

Dt*
=

L
V

D
Dt

where m0 is a reference viscosity.
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Substitution of the above dimensionless variables and differential operators into Equation
(1) yields the non-dimensional generalized Navies–Stokes equations, which may be started in
the following form:

ReUt=9 ·(9U)−ReU·9U−9p (2a)

9 ·U=0 (2b)

where Re=rLV/m0 is the non-dimensional group number termed the Reynolds number.

3. NUMERICAL SCHEME

3.1. Discretization

To solve the Navier–Stokes equation (2a), together with the incompressibility constraints (2b),
we employ a semi-implicit time stepping procedure, namely a Taylor–Galerkin/pressure–
correction finite element scheme [1] as cited above. Briefly, the Taylor–Glerkin-based al-
gorithm is a fractional step method that semi-discretizes first in the temporal domain using
Taylor series expansions in time and a pressure–correction procedure, to extract a time
stepping scheme of second-order accuracy. The discretization is completed via a spatial
Galerkin FEM. We assume that the flow domain is discretized into a triangular mesh, and that
piecewise continuous linear (pressure) and quadratic (velocity) interpolation functions apply on
such elemental regions. The Taylor–Galerkin algorithm has three distinct fractional stages per
time step as follows.

Stage 1
Given initial velocity and pressure fields, non-divergence-free un+1/2 and u* fields are calcu-
lated via a two-step predictor–corrector procedure. The corresponding mass matrix governed
equations are solved iteratively by a Jacobi method.

Stage 2
Using u*, calculate the pressure difference (pn+1−pn) via a Poisson equation, applying a
Choleski method of solution.

Stage 3
Using u* and the pressure difference (pn+1−pn), determine a divergence-free velocity field
un+1 by Jacobi iteration.

Adopting quadratic and linear interpolations, U(x, t) and P(x, t), to the solution, where

U(x, t)=Uj(t)Fj(x), P(x, t)=Pj(t)cj(x)

we may proceed to solve Equations (2a) and (2b). The fully discrete formulation STGFEM
over a single time step, Dt= tn+1− tn, may be represented in the following matrix–vector
notation:
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Stage 1a

�2Re
Dt

M+
1
2

Su

�
(Un+1/2−Un)={− [SuU+ReN(U)U]+LTP}n

Stage 1b

�2Re
Dt

M+
1
2

Su

�
(U*−Un)= [−SuU+LTP]n−Re [N(U)U]n+1/2

Stage 2

K(Pn+1−Pn)= −
2
Dt

LU*

Stage 3

Re
Dt

M(Un+1−U*)=
1
2

LT(Pn+1−Pn)

where variables are defined as nodal vectors at time tn for velocity (Un) and pressure (Pn), an
intermediate non-solenoidal nodal velocity vector (U*), mass matrix (M), momentum diffusion
matrix (Su), a pressure stiffness matrix (K), convection matrix [N(U)] and divergence/pressure
gradient matrix (L).

In matrix notation, we have

Mij=
&

V
rfifj dV

Kij=
&

V
r(9ci ·9cj) dV

N(U)ij=
&

V
rfi

�
Uk

l fl

(fj

(xk

�
dV

(Lk)ij=
&

V
rfi

(fj

(xk

dV

(Su)ij= (Slm+Vlm)ij

(Slm)ij=
&

V
rm
�

xlk

(fi

(xk

(fj

(xk

�
dV, if l=m

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 993–1026



V. NGAMARAMVARANGGUL AND M. F. WEBSTER998

(Slm)ij=
&

V
rm
�(fi

(xm

(fj

(xl

�
dV, if l"m

where k, l=1, 2; x1=r, x2=z ; xlk=2 if l=k and xlk=1 if l"k ; and

(Vlm)ij=
2fifj

r2 if l=m=1

(Vlm)ij=0 if l, m"1

The time stepping procedure is monitored for convergence to a steady state via relative
increment norms (using both maximum and least-squares measures) subject to satisfaction of
a suitable tolerance criteria, here taken as 10−5.

3.2. Free surface location

The extent of extrudate swell in a die-swell flow may be determined by implementing a free
surface location method via a modified iterative technique (e.g. in industrial casting processes).
According to Crochet et al. [22], the following three boundary conditions may be defined on
a free surface:

6rnr+6znz=0 (3)

trnr+ tznz=S
� 1

r1

+
1
r2

�
(4)

trnz− tznr=0 (5)

with variables specification of radial velocity (6r), axial velocity (6z), components of the unit
normal to the free surface (nr, nz), surface force normal to the surface (tr, tz), principal radii of
curvature (r1, r2) and surface tension coefficient (S).

Typically, when modelling a free surface iteratively, conditions (4) and (5) are enforced as
boundary conditions. Then the normal velocity is calculated using Equation (3) and this is
used to describe the shape of the upper extrudate boundary for say die-swell flow, as illustrated
in Figure 1(c). In the free jet flow, the distance from the axis of symmetry is

r(z)=R+
&�

z=0

dz
6r(z)
6z(z)

(6)

where R is the tube radius.
In this paper, the integral in Equation (6) is evaluated by Simpsons quadrature rule, thus

providing an estimate of the extrudate shape. The comparison of Richardson’s [3] asymptotic
results for swell ratio (x=Rj/R, Rj is jet radius, R is tube radius) with those from a finite
element calculation is catalogued in Silliman and Scriven [15]. Phan-Thien [17] focuses on the
extrudate shape as it varies due to slip at the wall and compares the swelling ratio for various
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Figure 1. Schema for flow problems.

critical wall shear stresses, employing an alternative free surface updating strategy. The
implementation of the process is straightforward. First, the free surface must be estimated
from a pervious solution. The function describing any free surface at time t is defined as
h=h(z, t) so that at the free surface the following equation holds and must be updated at each
time step:

(h
(t

=6r−6z
�(h
(z
�

=G(U(t), h(t)) (7)

where U= (6r, 6z). The free surface equation (7) is updated in time by either a first- or
second-order scheme. Considered in a pointwise manner in space, the first-order Euler scheme
with chosen time step Dt, is provided by
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h(z, t+Dt)=h(z, t)+Dt G(U(t), h(z, t))

To derive a second-order scheme, the temporal series is pursued to higher-order terms

h(z, t+Dt)=h(z, t)+Dt G(U(t), h(z, t))+
1
2

(Dt)2 (

(t
G(U(t), h(z, t))

An alternative second-order scheme is a two-step implementation due to Heun

h%=h(z, t)+Dt G(U(t), h(z, t))

h(z, t+Dt)=h(z, t)+
1
2

(Dt)[G(U(t), h(z, t))+G(U(t), h%(z, t))]

The results from the implementation of Euler and Heun schemes prove remarkably similar,
and therefore only those for the Euler scheme are discussed in this article.

4. PROBLEM SPECIFICATION

There are essentially two types of problems studied here, stick–slip flow and die-swell flow. A
variant within each category is to consider, in addition, a drag flow component. Poiseuille
stick–slip flow is taken within a Cartesian framework and also under an annular configuration
when drag flow is imposed simultaneously. For the case of Poiseuille die-swell, the benchmark
axisymmetric setting is taken first, this being followed by an annular instance with drag-flow.
A visual schemata of the boundary conditions for the stick–slip flow, stick–slip/drag flow and
die-swell flow are given in Figure 1. Velocity conditions are imposed as essential conditions,
while stress conditions arise naturally in weak form (see Silliman and Scriven [15]). Initial
conditions for this time stepping scheme are taken as either quiescent for stick–slip instances,
or for die swell flows, from a precomputed steady state solution with an estimated free surface
location.

4.1. Planar stick–slip flow

The stick–slip flow problem consists of two regions with distinct boundary conditions, a
channel section and a free jet flow section. Considering the planar case, stick or no-slip
boundary conditions apply at the channel walls, to adjust subsequently to slip boundary
conditions beyond the channel, as shown in Figure 1(a). This implies that tangential velocity
and shear stress vanish on the free surface, as does cross-stream velocity and normal stress
(Cauchy stress defined as s) at the outlet.

We use the notation PS to imply Poiseuille flow as given by a one-dimensional velocity
profile of the dimensionless form Vx(y)=Vmax(1−y2), with maximum inlet velocity Vmax.
Characteristic scales of length and velocity are adopted as half channel width and average inlet
velocity respectively. This problem is solved using the STGFEM above on three uniform and
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one biased mesh; the details of which are specified in Table I and illustrated in Figure 2. The
smallest element in the biased case is located adjacent to the singularity. Comparison of the
results obtained is made against those of Richardson [3] and Nickell et al. [11] in Section 5.1.
To this end, the implementation is considered for creeping flow in the upper half plane through
symmetry. A vanishing pressure datum is set on the top slip surface and outer boundary.
Dimensionless quantities are taken as x1= −2, x2=2, y0=0, y1=1 and Vmax=1.5 units.

4.2. Axisymmetric stick–slip flow (ASSF)

The boundary conditions for the axisymmetric case of stick–slip flow are similar to those for
the planar stick–slip flow described in Section 4.1, Figure 1(a). The only difference in the
governing conditions lies in the introduction of a cylindrical co-ordinate system. A Poiseuille
flow is imposed at the inlet. Advantage may be taken of symmetry radially, so that solutions
are sought in the top half plane, noting that this implies a lower symmetry boundary where the
radial velocity vanishes. Characteristic scales of length and velocity are taken as channel width
and maximum inlet velocity. Dimensionless quantities are channel radius and length of unity,
jet length of two. Henceforth, for all flows considered a finite small value of the Reynolds
number is assumed to emulate practical creeping conditions, Re=10−4. For this case, we have
generated a biased fine mesh for adequate resolution, which is finer than that employed for the
planar counterpart problem, with elements 18×54, nodes 4033, and size of element 2.6083×
10−2, as demonstrated in Figure 8(a).

4.3. Stick–slip/drag flow (SSDF)

This is a more complex annular flow configuration than conventional axisymmetric stick–slip
flow for which the mesh of Figure 8(a) is employed, Such a problem instance is initiated from
an inlet annular pressure-driven base flow with a superimposed drag flow on the inner
boundary. Remaining boundary conditions follow stick–slip flow as cited above. A schematic
illustration is provided with boundary conditions in Figure 1(b). The velocity 6z at the inlet is
defined by Equation (A.1) of Appendix A. Such a specification may be found in wire-coating,
for example, where the inner boundary represents a wire moving at a constant speed taken
here of non-dimensional radial dimension a=0.15 units. Characteristic scales are taken for
length as inlet hydraulic radius R and for velocity as in Section 4.2 for axisymmetric stick–slip
flow. This leads to equivalent flow rates in both flow settings. Dimensionless quantities result
as z1= −1, z2=2, jet length of 2, wire speed Vwire=0.5, and b=1.15 units.

Table I. Finite element meshes for stick–slip flow.

Total elementElement Size of elementMesh
(Dh)

(a) Coarse mesh 5×20 200 0.200
80010×40(b) Medium mesh 0.100

15×60(c) Fine mesh 1800 0.067
0.024(d) Biased fine mesh 15×60 1800
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Figure 2. Planar stick–slip flow: mesh patterns.

4.4. Die-swell flow

The die swell problem may be identified via two regions of different character, the shear flow
within the die and the free jet flow beyond it. Each region has its unique set of boundary
conditions and the problem is posed in an axisymmetric frame of reference. Poiseuille flow is
imposed at the inlet. The outer wall boundary experiences stick conditions in the die section,
changing to slip conditions at the free meniscus surface beyond the die. Channel radius and
maximum inlet velocity are taken as characteristic scales, following Section 4.2. A schematic
representation of the problem is presented in Figure 1(c), with notation for Cauchy stress (s),
unit normal vector (n) and unit tangential vector (s) to the respective surface.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 993–1026
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Under the assumption of negligible surface tension die-swell flow is simulated for a range of
refined meshes, coarse, medium and fine, with two different mesh structures. This permits an
analysis of consistency, order of accuracy and provides insight as to the influence of mesh
structure on the solution. The meshing details are given in Figure 10, where Dh is a measure
of the smallest size of element.

4.5. Die-swell/drag flow

This problem is a combination of those stated previously taking the drag flow described under
stick–slip with the die-swell specification. The free surface conditions remain unchanged, and
the inner boundary (wire) moves at a constant speed of 0.5 units. The same characteristic
scales of length and velocity, and dimensionless quantities of Section 4.3 are adopted in this
case. The inlet profile is determined from Equation (A.1) of Appendix A. This problem is
simulated on the same three levels of mesh refinement as for the die-swell problem, where we
have pre-selected the better performing mesh option with UD structure, see Table II, Figure
10 and comments below.

5. RESULTS AND DISCUSSION

5.1. Planar stick–slip flow

First the coarse, medium and fine meshes of Table I and Figure 2 are considered. The location
of the stick–slip singularity is indicated by arrow in Figure 2. On the medium mesh the
velocity vector plot of Figure 3(a) illustrates the general pattern of the flow for the upper half
plane, that is visually identical for meshes (a), (b) and (c) of Table I. This shows an initial
Poiseuille flow that gradually adjusts to a plug flow. Figure 3(b) and (c) represents the
horizontal (Vx) and vertical (Vy) velocity component line contours. Figure 3(b) shows Vx with
no-slip at the upper boundary to channel exit, whereupon Vx gradually increases, becoming
faster with increasing distance along the top surface (reflecting slip conditions). The vertical
velocity (Vy) line plot of Figure 3(c) vanishes at inlet and outlet, top surface and symmetry
axis, and displays closed contours of constant value in the neighbourhood of the singularity,
see Nickell [11]. The centre of the plot demonstrates a peak maximum value of 0.17 units.

Table II. Finite element meshes for die-swell flow.

Dh � 10−2DirectionTotalElementMesh
element

6.4550216(a) Coarse UD mesh 6×18 �
12×36 864 �(b) Medium UD mesh 3.0533
18×54 1944 �(c) Fine UD mesh 1.9667

6.4550�2166×18(d) Coarse DU mesh
(e) Medium DU mesh 12×36 864 � 3.0533

1.9667�194418×54(f) Fine DU mesh

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 993–1026
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Figure 3. Velocity results for planar stick–slip flow: medium mesh, Re=0.

The shear rate I2 contour plot (Figure 4(b) representing the second invariant of the rate of
strain tensor) demonstrates the formation of a singularity at the die exit, which is again
represented clearly in the line plot of Figure 4(c). The shear rate at the top surface (Figure 4(c))
increases exponentially towards the die exit (x=0) to a maximum of 8.28 units. On moving
away from the die, a sharp drop is displayed with shear rate tending to zero at x=2 units.
Figure 4(a) shows a contour plot of pressure for this problem. A maximum value in pressure
is observed of 6.89 units at the inlet boundary, which represents the pressure drop across the
flow, a minimum pressure of −2.79 units occurs near the singularity.

Table III gives the comparison of maximum shear rate I2, which occurs at the top free
surface, and for pressure P throughout the domain for the three levels of mesh refinement. The
maximum value of shear rate occurs at the singular die exit point and doubles from coarse to
fine mesh solutions. The maximum value of P represents the pressure drop across the flow and
is fairly stable around 6.75 units. Minimum values of P correspond to pressure pockets
adjacent to the die exit within the jet flow.

Turning to comparison against analytical solutions, we consider flow profiles for velocity
and pressure. The velocity profile for x50 (Figure 5(a)) shows a parabolic flow that gradually
flattens. Similarly for x]0, the velocity profile of Figure 5(b) reveals an initial flattened

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 993–1026
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Figure 4. Planar stick–slip flow: medium mesh, Re=0.

Table III. Shear rate and pressure for planar stick–slip flow: various meshes.

Course mesh Medium meshSolution Fine mesh

Max 5.86 8.28 10.14I2

Min −1.35P −2.79 −3.91
Max 6.76 6.89 6.75

parabolic form, which gradually adjusts to a linear pattern with increasing x. Table IV and
Figure 6 provide tabular and graphical comparisons of velocity results with STGFEM scheme
on coarse, medium and fine meshes, against the analytical solution of Richardson. The
analytical solution for the streamwise velocity component Vx was derived from the streamfunc-
tion, as identified via the formula of Richardson [3] provided in Appendix A. Table V and
Figure 7(a) provide equivalent data for pressure, where the Richardson solution has been
reproduced based on the graphical information recorded in Reference [3]. The error in the

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 993–1026
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Figure 5. Planar stick–slip flow: medium mesh, cross–channel velocity profiles, Re=0.
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Table IV. Analytical and computed velocity along axis of symmetry: various meshes.

Richardson Coarse meshx axis Medium mesh Fine mesh
200 elements 1800 elements800 elements

1.4964 1.4956 1.4958−1.0 1.4959
1.4899 1.4889−0.8 1.4890 1.4892
1.4758 1.4751−0.6 1.4747 1.4749

−0.4 1.4484 1.4496 1.4479 1.4479
−0.2 1.4027 1.4086 1.4042 1.4035

1.2798 1.28660.2 1.2737 1.2701
0.4 1.1967 1.2229 1.2059 1.2006

1.1308 1.16980.6 1.1494 1.1403
0.8 1.0834 1.1303 1.1074 1.0996
1.0 1.0516 1.1032 1.0787 1.0702

results decreases consistently and proportionally with refinement over coarse, medium and fine
meshes.

Figure 7(a) shows the variation in pressure along the centreline in contrast to the Richardson
analytical solution, and those on coarse, medium and fine meshes. All predictions show
consistency and close correspondence for pressure to the analytical solution (see Table VI),
decreasing linearly within the die, becoming more parabolic in shape in the jet region, as
pressure tends to vanish. The corresponding results on accuracy for velocity and pressure are
illustrated in Table VI with the comparison based on maximum error norm measures. The trend
of behaviour for velocity with mesh refinement is displayed in Figure 7(c), which indicates
O(h1.9) inside and O(h1.0) beyond the die. Hence, the velocity solution displays almost
second-order accuracy in the die flow and first-order beyond. For the fine mesh results of Table
VI, the error detected in velocity increases from 0.06 per cent within the die to 1.77 per cent
beyond. For pressure, the error degradation is far less dramatic and the jet flow solution
displays slightly less error than is the case for the die flow. Note the solution scaling in error
norms for pressure is taken as unity for the jet flow as the size of the solution is less than unity.
The error is 2.43 per cent within the die. Beyond the die the error is represented as 3.78 per
cent.

In Table VII, the STGFEM velocity results (at x=0.2 units on the free surface after the die
exit) of the three mesh refinements are compared with the analytical solution of Richardson,
the numerical SBEM results of Ingham and Kelmanson, and the SFEM and ISBFM results of
Georgiou et al. (recorded to precision quoted in original references, correcting for the noted
anomaly cited in Georgiou et al. [8] of Richardson’s result). The STGFEM is found to be
consistent across meshes, providing a convergent trend in velocity with mesh refinement. The
velocity on the finest mesh lies between the analytical result of Reference [3] and the numerical
results of References [5,8,9], falling within an error of about 3 per cent. The corresponding
Figure 7(b) shows the velocity adjustment with increasing x near the die exit as the fluid travels
away from the singularity (x=0). This figure also compares the analytical solution with others
from the literature. From this plot and the values of Table VII, we note for uniform meshing
velocity agreement in trend along the top surface with Ingham et al. [5] and Georgiou et al. [8,9],
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Figure 6. Planar stick–slip flow: analytical and numerical solutions for velocity field along centreline
y=0, Re=0.

though slightly overestimated in value. The departure from the analytical solution in the
results of References [5,8,9] may be somewhat attributed to the overall uniformity in mesh-
ing they adopt. For the biased fine meshing option, there is an increased tendency towards
the analytical solution of Richardson, which reflects the improvement to be had with such
an approach. At x=0.2, the difference from the Richardson solution drops to O(0.1 per
cent).
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Table V. Analytical and computed pressure along axis of symmetry: various meshes.

Richardsonx axis Coarse mesh Fine meshMedium mesh
1800 elements800 elements200 elements90.0001

5.7264−1.6 5.5620 5.5786 5.5924
4.4627 4.3587−1.2 4.3750 4.3887
3.2488 3.1542−0.8 3.1688 3.1818

−0.4 2.0299 1.9834 1.9923 2.0003
0.0 1.0348 0.9916 0.9924 0.9980

0.4179 0.37590.4 0.3781 0.3801
0.8 0.1393 0.1174 0.1203 0.1208

0.0398 0.03541.2 0.0353 0.0354
1.6 0.0149 0.0095 0.0094 0.0094
2.0 0.0000 0.0000 0.0000 0.0000

5.2. Axisymmetric stick–slip flow and stick–slip/drag flow

For both axisymmetric stick–slip flow (ASSF) and stick–slip/drag flow (SSDF), the fine mesh
of Figure 8(a) is used. Comparisons between these two flows for values of shear rate I2 and
pressure P are evident in Table VIII at the same level of entry flow rate.

The velocity vector plot for stick–slip/drag flow is displayed in Figure 8(b), which reveals an
initial annular flow adjusting rapidly at the pipe outlet to finally assume a plug flow. The
radial and axial velocity line contour plots for both cases are virtually identical to the case of
planar stick–slip flow and are not repeated for conciseness (see Table VIII for relevant
quantities). Figure 8(c) shows the pressure line contour plot, for which the initial inlet
maximum value of 4.02 units decreases in a linear fashion while approaching the singularity
where a minimum pressure of −3.01 units is observed. The shear rate contours of Figure 8(d)
increase in value at the top surface, reaching a peak shear rate of 6.3 units at the singular point
after which the shear rate drops sharply to zero. This is due to the dependence of shear rate
upon the velocity gradient, which increases sharply in the neighbourhood of the die exit
location, specifically along the boundary streamline. The general trends of behaviour in
velocity, pressure and shear rate are exposed more starkly by direct comparison between those
for pure ASSF and those for SSDF.

The comments above are borne out by the line plots of Figure 9. A comparison of axial
velocity Vz along the free top surface for the two flows, ASSF and SSDF, is shown in Figure
9(a). The final value of free-stream velocity is reduced by 21 per cent in the drag flow case, due
to the influence of the moving wire on the deformation. Comparisons of pressure and I2 for
ASSF and SSDF in the axial direction are made in Figure 9(b) and (c) respectively. The change
in pressure drop between these two flows of Figure 9(b) is 17.6 per cent, with an SSDF value
of 4.02 units and an ASSF value of 4.88 units. Hence, drag flow imposition gives rise to a
decline in the rate of pressure drop as one might expect. Patterns are similar to the planar
stick–slip case of Figure 7(a). The shear rate profiles of Figure 9(c) follow the general form of
Figure 4(c) for planar stick–slip flow. The behaviour of I2 in the neighbourhood of the
singularity is exposed; see also Table VIII and Figure 8(d). Here field patterns are similar in
Figure 8(d) to those of Figure 4(b). The SSDF value of 6.28 units represents a reduction of 21
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Figure 7. Planar stick–slip flow: analytical and numerical solutions, Re=0.
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Table VI. L� error for velocity and pressure against analytical solution: various meshes.

Coarse meshL� error Medium mesh Fine mesh
Dh=0.20 Dh=0.07Dh=0.10

0.004175 0.001102Velocity (in die) 0.000595
Velocity (beyond die) 0.049145 0.025848 0.017731

0.028702 0.025803Pressure (in die) 0.023395
Pressure (beyond die) 0.041986 0.039850 0.037820

Table VII. Analytical and computed velocity results at x=0.2 on free surface
after die exit.

Method Velocity

0.618040Analytical [3]
0.572608SBEM [5]
0.571896SFEM [8]
0.571259ISBFM [9]
0.690559STGFEM (coarse mesh)
0.643575STGFEM (medium mesh)
0.625190STGFEM (fine mesh)
0.619786STGFEM (biased fine mesh)

per cent from the ASSF value of 7.93 units. Clearly this is directly attributable to the
additional drag flow component.

5.3. Die-swell flow

The vector velocity plot of Figure 11(a) shows an initial inlet Poiseuille flow that adjusts to a
final plug flow. The radial velocity lines under die swell conditions (Figure 11(b)), reflect the
stick–slip transition at the upper boundary. The contour plots of Figure 11(b)–(e) reflect close
agreement with the findings of Nickell et al. [11], even taking into account the differences in
meshing. The radial velocity increases towards the centre of this zone; the maximum value of
0.14 units occurring at the centre. Figure 11(c) illustrates contour lines for the axial velocity.
It should be noted that Vz increases at the top boundary after the die exit, while on the
symmetry axis it diminishes from an inlet value of unity to an exit free jet value of around 0.4
units (Figure 12(a)).

The shear rate (I2) line contours of Figure 11(e) show a localized singularity, whose
maximum is 10.75 units. In conjunction with Figure 12(c), we may discern that the shear rate
at the top boundary initially commences from a constant value of 1.4 units, but increases
exponentially upon nearing the singularity until it peaks at 10.75 units. The shear rate then
drops rapidly with further increase in z, departing from the singularity (z\0) to eventually
vanish at approximately z=1.2 units. The contour plot of pressure in Figure 11(d) indicates
a maximum inlet value of 4.9 units and minimum value of −7.1 units at the singularity.
Comparisons are made in Table IX for shear rate maxima I2 and pressure P extrema, on the
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Figure 8. Stick–slip/drag flow: Re=10−4.

Table VIII. Axisymmetric stick–slip and stick–slip/drag flow: shear rate and
pressure.

ASSFSolution SSDF

I2 Max 7.93 6.28
Min −3.92P −3.01
Max 4.88 4.02
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three levels of refinement and two different mesh structures. Since the adjustment between
coarse and fine mesh results is minor in pressure and minuscule for velocity, plots in the axial
direction are shown only for the fine mesh. From Table IX, the difference in I2 with mesh
refinement is observed to be relatively large in the neighbourhood of the singularity. This is
strictly a local phenomenon. On comparing the shear rate profile elsewhere there is very little

Figure 9. Stick–slip flow and stick–slip/drag flow, Re=10−4.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 993–1026



V. NGAMARAMVARANGGUL AND M. F. WEBSTER1014

Figure 9 (Continued)

difference overall, amounting to 1 per cent at most between the coarse and fine meshes, with
no observable difference between the medium and fine versions.

On comparing ASSF and die-swell flow for fine meshes in Figure 12, I2 and pressure profiles
are very similar within the die due to the imposition of equivalent inlet flow rates for both
flows. The shear rate extrema at the singularity achieve maxima of 10.75 units for die-swell
flow and 7.93 units for ASSF, representing an increase of 36 per cent (Figure 12(c)). Since for
both cases with the fine UD mesh, stick–slip conditions apply before the die exit and entry
flow lengths are identical, there is consequently little difference between pressure drop values
over the die (0.01 per cent). On exit from the die, the effect of the die-swell on the free surface
results in a slight drop in pressure. This is entirely in keeping with our prior results for planar
stick–slip flow of Figure 7(a), where declining rates were contrasted against analytical values.
Under the same imposed inlet flow rate, the difference in the velocity on the free surface
between axisymmetric stick–slip flow and die-swell flow is displayed in Figure 12(a). The
free-stream jet exit velocity is 21 per cent lower for die swell flow than for stick slip flow.
Hence, as anticipated, we confirm that allowing the free surface to swell significantly reduces
the flow speed to compensate.

Figure 13(a) provides the comparison of the derived die swell surfaces for the six different
meshes. The corresponding values for swelling ratio are provided in Table X, where a direct
comparison with results from the literature is performed. Figure 13(b) shows the effect of mesh
refinement on L� error for diagonal orientation meshes DU and UD for values see Table XI.
With mesh refinement, maximum values of L� errors for mesh UD and DU are O(h1.6) and
O(h1.3) respectively. The swelling ratio is found to depend on the size of the smallest element
and the orientation of the elements. The DU orientation gives approximately 50 per cent larger
L� error than the UD orientation (see Table XI), affecting swelling ratio results accordingly.
This superior UD mesh performance (approaching second-order) is attributed to the richer
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Figure 10. Die-swell flow: mesh patterns.

interpolation offered by the UD orientation for such quantities as velocity gradients. Those are
represented in a discontinuous sense via the variational treatment (note also the connection to
locking-corner meshing for primary variables). This we believe pervades many of the solutions
reported in the literature, wherever continuous interpolation for primary variables is adopted.
Rectangular meshing would suffer from these drawbacks in a likewise manner, being even
more restrictive in the variation of functionality offered around the singular point. From Table
X, we find that the swelling ratio of the medium refinement meshes, UD and DU is close to
that of Tanner [10], the error being 0.2 per cent for the UD mesh. The swelling ratio of the fine
UD mesh is the closest estimate to that of Nickell et al. [11] with an error of 0.3 per cent in
that case. Tanner also provides an asymptotic estimate of x=1.130. This correspondence with
the literature may be taken as a strong indication of acceptable accuracy in our results. As
indicated above, the orientation of the diagonal element in the mesh that intersects with the
singularity, is an important factor and influences the accuracy of the corresponding solutions.
To demonstrate this issue, the error in the swelling ratio is charted in Table XI against Nickell
et al. results, on the two DU and UD mesh sets. Trends in convergence are superior for
the UD mesh sets in comparison with those for DU. A hybrid fine mesh strategy also
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Figure 11. Die-swell flow: fine UD mesh, Re=10−4.
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implemented, of DU in the die (Figure 10(f)) and UD in the jet (Figure 10(c)), gave a marginal
improvement over the UD option in swelling ratio to reach the asymptotic value of x=1.30.
It is also noted that the separation angle u between the horizontal and the exterior swelling
edge of the first element after the singular point is smaller for the UD meshes. This angle tends
to a value of 17.5° with mesh refinement on the UD meshes, as compared with 20.8° for the
DU alternative.

In contrast, on testing the Phan-Thien free surface procedure, correspondingly larger
swelling ratios are derived. It has been found necessary to impose an additional velocity free

Figure 12. Stick–slip flow and die-swell flow, fine UD mesh, Re=10−4.
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Figure 12 (Continued)

Table IX. Die-swell flow: shear rate and pressure.

C mesh M meshSolution F mesh C mesh M mesh F mesh
DUUD DUUD DUUD

Max 5.36 8.33 10.75I2 6.24 9.67 12.16
P Min −3.06 −5.32 −7.10 −2.62 −4.90 −6.43

Max 4.96 4.94 4.94 4.97 4.96 4.96

surface boundary correction with this procedure to ensure tangential conditions and vanishing
shear stress. Without such a correction, the results on swell and angle are considerably
inaccurate. Table XII displays swelling ratio and angle computed on coarse and fine UD
meshes. The corresponding swelling ratios are 35.4 and 35.0 per cent respectively, with
separation angles of 23.7° for the coarse and 23.6° for the fine mesh. Both of these estimates
are marked in their departure from the results of Nickell et al. and other investigators. For
example, on the mesh the error in swelling ratio from that of Nickell et al. is 19.7 per cent.
Hence, for current purposes, and as implemented here in a pointwise fashion following the
original author, this method is discarded on the grounds of inaccuracy.

5.4. Die-swell/drag flow

For this final flow instance under consideration, we allot for mesh (c) of Table II and Figure
10(c), as the swelling ratio errors on UD meshes are considerably lower than those for the DU
meshes. A principal point of interest is to analyse the effect of the additional component of
drag flow upon the undisturbed die-swell flow. In this regard, comparison is made in Table
XIII for shear rate I2 maxima and observed extrema for pressure P. For die-swell/drag flow,
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Figure 13. Die-swell flow: comparison of solutions, Re=10−4.

shear rate I2 and pressure drop are reduced when compared with die-swell flow by 21 and 19.6
per cent respectively. The contours of Figure 14 bear this out. For Figure 14(a), in contrast to
Figure 11(d), the pressure contours reflect the reduced effect on the negative pressure pockets
(−5.58 units) near the singularity over the die-swell case (−7.1 units). Likewise, values of
shear rate maxima alter from Figure 14(b) (8.47 units) to that for die-swell in Figure 11(e)
(10.75 units).
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Table X. Swelling ratio for die-swell flow.

x x (per cent)Investigator

1.136 13.6Tanner [10]
1.128Nickell et al. [11] 12.8

Chang et al. [12] 1.139 13.9
Crochet and Keunings [13] 1.126 12.6

1.141Coarse UD mesh 14.1
1.134 13.4Medium UD mesh
1.131Fine UD mesh 13.1

Coarse DU mesh 1.147 14.7
Medium DU mesh 1.137 13.7

1.133Fine DU mesh 13.3
1.130Fine DU-UD mesh 13.0

Table XI. Swelling ratio error for UD and DU meshes against Nickell et al.
[11] results.

L� error � 10−2 u (degree) Dh � 10−2Mesh

1.1525 18.2881(a) Coarse UD mesh 6.4550
0.5319(b) Medium UD mesh 17.8016 3.0533
0.2660 17.5737(c) Fine UD mesh 1.9667
1.6944 21.4798 6.4550(d) Coarse DU mesh
0.7979 20.9369(e) Medium DU mesh 3.0533

(f) Fine DU mesh 0.4433 20.4761 1.9667
0.1525 17.6604(g) Fine DU-UD mesh 1.9667

Table XII. Swelling ratio and angle for Phan-Thien strategy.

xMesh u (degree)

23.66601.354Coarse UD mesh
Fine UD mesh 23.61211.350

Table XIII. Die-swell flow and die-swell/drag flow:shear rate and pressure.

Die-swell flow Die-swell/drag flowSolution

I2 Max 10.75 8.47
−7.10P −5.58Min

3.974.94Max

The finer and more localized detail comparing these two flow scenarios is extracted in the
line plots of Figure 15. Figure 15(c) illustrates the pressure P on the inner surface and Figure
15(d) the shear rate (I2) at the free surface. The line pressure plot reveals that drag flow gives
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Figure 14. Die-swell/drag flow: fine UD mesh, Re=10−4.

rise to a negative dip in pressure on the inner surface beyond the die exit. This was not present
when drag flow was introduced for stick–slip flows (see Figure 9(b)), and so is a consequence
of the die-swell setting. Also, the decline in pressure drop is prominent. The shear rate profile
of Figure 15(d) (Table XIII) can be compared against both Figure 9(c), for ASSF–SSDF
(Table VIII), and Figure 12(c) for ASSF–die-swell. In the die-swell setting, drag flow incurs a
reduction in peak I2 values (10.75–8.47 units), comparable with the effect noted for stick–slip
(7.93–6.28 units). Alternatively, in the contrast between die-swell and stick–slip (with or
without drag flow) there is a consistent trend in elevation of peak I2 values once swelling is
present (here by 35 per cent).

The radial and axial velocity contour plot for the die-swell/drag flow are similar in
appearance to Figure 11(b) and (c), and are not reproduced for the sake of conciseness. Figure
15(a) and (b) provides line plot comparisons between die-swell flow and die-swell/drag flow for
velocity and die-swell respectively at the free surface employing the fine UD mesh. At the
outlet the free-stream velocity of die-swell/drag flow is reduced by 21 per cent over that of pure
die swell, so that swelling reduces accordingly by 4.2 per cent. This is in keeping with the
correspondence in flow rate at the outlet and our findings for the stick–slip scenario. The
separation angle for die swell/drag flow is 17.19°, which is a reduction of 2.2 per cent on the
former die swell case. This accounts for the above quoted reduction in swelling ratios between
these two flow instances.
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6. CONCLUSIONS

This study has provided an analysis of a Taylor–Galerkin/pressure–correction method in its
application for model free surface flow problems. First, through the investigation of stick–slip
flow we have been able to establish comparison against analytical and other numerical
solutions, for which we find agreement to within order 1 per cent.

For die–swell flows, with the added complication of a priori unknown free surface location
we find close correspondence on swelling ratio to that reported in the literature, to within

Figure 15. Die swell flow and die-swell/drag flow, fine UD mesh.
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Figure 15 (Continued)

order 0.1 per cent. Through a careful study of mesh structure, we have also found that the
accuracy of the solutions generated is sensitive to the orientation of the mesh in the location
of the die exit. Here we have demonstrated that a poor selection of meshing may affect
accuracy by up to 50 per cent. Accuracy has been demonstrated to pertain to second-order,
with or without involvement of free surface location. This is so even in the presence of a die
exit singularity to the flow in question.

In the comparison of stick–slip to die-swell flows under equivalent imposed inlet flow rate,
the free-stream jet velocity is 21 per cent lower for die-swell flow than for stick–slip flow while
pressure profiles barely differ. The shear rate extrema at the singularity peak at 10.75 units for
die-swell flow, but attain the lower value of 7.93 units for stick–slip flow. Hence, shear rate
extrema are elevated by 35 per cent once die-swell is incorporated.
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We have also addressed the issue of associating an additional drag flow component to these
two base type flows. This has afforded the opportunity to compare scenarios both with and
without drag flow. Our findings reveal that shear rates at the singularity are reduced by as
much as 21 per cent with the addition of drag flow for both slick–slip and die-swell flows. It
is conspicuous that the same level of reduction in shear rate is observed for both flows. This
we attribute to the local influence at the singularity that the inclusion of drag flow has.
Likewise, pressure drops are also found to decrease by 17.6 per cent for stick–slip and 19.6 per
cent for die-swell flow. In the die swell instance alone, the swelling ratio is observed to reduce
by 4.2 per cent upon the addition of drag flow.

This research study may be viewed as a stepping stone towards the solution of more complex
industrial based flows that involve coatings of one form or another. This is typically the case
for example in processes such as wire coating, roller-coating and printing.

APPENDIX A

To derive the annular inlet flow profile, we follow Bird [23] and use the non-dimensional
equation for annular pressure driven flow

Vz(r)=
Pb2

4mL
!
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b
�2

+
1

ln(a/b)
��a

b
�2

−1+
4mLVwire

Pb2

n
ln
�a

b
�"

(A.1)

where variables are defined as viscosity m, length Z1Z2 (Figure 1(b)) L, pressure drop between
inlet and outlet P, wire speed Vwire, inner annular radius a and outer radius b.

Subsequently, we may derive the flow rate at inlet and relate this to pressure drop, via

Q=2p
& b

a

rVz(r) dr (A.2)

Hence, once flow rate Q is prescribed (say from an outlet plug or free jet flow), we may
evaluate the pressure drop from the constant term, Pb2/4mL, utilizing Equation (A.1) for Vz(r)
within Equation (A.2).

We have recourse to the streamfunction solution for planar stick–slip flow, as developed in
the article of Richardson [3]
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Case xB0
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To analyse accuracy in terms of mesh size, we may express the finite element solution for
velocity as a power series expansion about the analytical solution

UFe(Dh)=UAnal+C(Dh)a

This allows us to consider a L� relative error measure for velocity against the analytical
solution of Richardson on various meshes, each denoted by element size Dh

max�UAnal−UFe�
max�UAnal�

Here, variables are defined as the numerical solution UFe, the analytical solution UAnal, size of
the smallest element Dh, constant C, and the order of error constant a.
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